Abstract
BackgroundThe light organs of the splitfin flashlight fish Anomalops katoptron are necessary for schooling behavior, to determine nearest neighbor distance, and to feed on zooplankton under dim light conditions. Each behavior is coupled to context-dependent blink frequencies and can be regulated via mechanical occlusion of light organs. During shoaling in the laboratory individuals show moderate blink frequencies around 100 blinks per minute. In this study, we correlated bioluminescent blinks with the spatio-temporal dynamics of swimming profiles in three dimensions, using a stereoscopic, infrared camera system.ResultsGroups of flashlight fish showed intermediate levels of polarization and distances to the group centroid. Individuals showed higher swimming speeds and curved swimming profiles during light organ occlusion. The largest changes in swimming direction occurred when darkening the light organs. Before A. katoptron exposed light organs again, they adapted a nearly straight movement direction.ConclusionsWe conclude that a change in movement direction coupled to light organ occlusion in A. katoptron is an important behavioral trait in shoaling of flashlight fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.