Abstract
The development of novel transition metal carbides for improved hard coating technologies requires a detailed understanding of the factors influencing their stability and mechanical performance. To this end, we carried out first principles calculations based on density functional theory to tabulate the electronic structures, formation energies, and phonon dispersion curves of 3d transition metal carbides adopting zincblende, rocksalt, and cesium chloride structures. By analyzing the corresponding results, we outline a theoretical framework that describes how valence electron concentration and bonding configuration control the stability of these compounds. Many early transition metal carbides are predicted to be stable in the rocksalt and zincblende structures, enabled by filled bonding states, whereas the cesium chloride structure shows persistent instability. For compounds that are predicted to be stable, mechanical properties were investigated through calculation of elastic tensors, from which observable properties including Vicker’s hardness and ductility were derived. A robust mechanical performance is shown to be correlated with complete filling of bonding orbitals as illustrated for rocksalt TiC and VC, which have calculated hardnesses of 25.66 and 22.63 GPa respectively. However, enhanced ductility and toughness can be achieved by allowing partial occupation of the antibonding states as in CrC, which has a relatively low Pugh’s ratio of 0.51.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.