Abstract

Identification of long-term stable biopharmaceutical formulations is essential for biopharmaceutical product development. Reduction of the number of long-term storage experiments and a well-defined formulation search space requires knowledge-based formulation screenings and a detailed protein phase behavior understanding. To achieve this, short-term analytical techniques can serve as predictors for long-term protein phase behavior. Protein phase behavior studies that investigate this concept commonly display shortcomings such as limited and small datasets, sample adjustments, or simplistic data analysis. To overcome these shortcomings, 150 unique lysozyme solutions were analyzed using six different short-term analytical techniques. Lysozyme’s structural properties, conformational stability, colloidal stability, surface charge, and surface hydrophobicity were obtained directly after formulation preparation. Employing the empirical phase diagram method, this short-term data was correlated to long-term physical stability data obtained during 40 days of storage. Short-term protein properties showed partial correlation to long-term phase behavior. Structural differences, changing surface properties, colloidal stability, and conformation stability as a function of formulation conditions were observed. This study contributes to long-term protein phase behavior research by presenting a systematic, data-dependent, and multidimensional data evaluation workflow to create a comprehensive overview of short-term protein analytics in relation to long-term protein phase behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.