Abstract

Spin crossover complexes are known to undergo bond length, volume, and enthalpy changes during spin transition. In an explosive spin crossover complex, these changes could affect the mechanical and initiation sensitivity of the explosive and lead to the development of a new class of sensitivity switchable materials. To explore this relationship, the well-known spin crossover compound [Fe(Htrz)3]n[ClO4]2n (1) was re-evaluated for its explosive properties, and its mechanical impact sensitivity was correlated to spin transition. A variable temperature impact test was developed and used to evaluate the impact sensitivity of 1 in the low spin (LS, S = 0), thermally accessed high spin (HS, S = 2), and mixed LS and HS states. For comparison, the structurally similar Ni compound, [Ni(Htrz)3]n[ClO4]2n (2), which does not undergo a spin transition at accessible temperatures, was synthesized and characterized, and its explosive properties and variable temperature impact sensitivity measured. These results reveal a correlation between impact sensitivity and spin transition, where 1 exhibits lower impact sensitivity in the LS state and increases in sensitivity upon transition to the HS state. Density functional theory was used to predict structural changes that occur upon spin transition that correlate to the change in sensitivity. This demonstrates, for the first time, an explosive spin crossover compound (ExSCO) that exhibits switchable impact sensitivity with a fully reversible internal switching mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.