Abstract
With the gaining popularity of rough clustering, soft computing research community is studying relationships between rough and fuzzy clustering as well as their relative advantages. Both rough and fuzzy clustering are less restrictive than conventional clustering. Fuzzy clustering memberships are more descriptive than rough clustering. In some cases, descriptive fuzzy clustering may be advantageous, while in other cases it may lead to information overload. Many applications demand use of combined approach to exploit inherent strengths of each technique. Our objective is to examine correlation between these two techniques. This paper provides an experimental description of how rough clustering results can be correlated with fuzzy clustering results. We illustrate procedural steps to map fuzzy membership clustering to rough clustering. However, such a conversion is not always necessary, especially if one only needs lower and upper approximations. Experiments also show that descriptive fuzzy clustering may not always (particularly for high dimensional objects) produce results that are as accurate as direct application of rough clustering. We present analysis of the results from both the techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.