Abstract
Comprehension of photon-triggered molecular processes is essential in the study of various important topics in physics, chemistry, and biology. Here we propose a correlated tunneling picture to understand the dissociative ionization process of molecules in intense laser fields based on a quantum model developed in the framework of many-body S-matrix theory including nuclear vibrational motion. In this quantum correlation picture, the single ionization of H2 and the subsequent electron-ion recollision-induced dissociation are considered as an entangled correlated process. It enables us to attribute the interference pattern in the joint-energy spectra to combined effects of single-slit diffraction and multi-slit interference of correlated electron-nuclear wave packets in the time domain. Our work opens a new avenue to understanding molecular dissociative ionization processes in external fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.