Abstract

A multimodal method for correlating linear and nonlinear optical spectra with a spatial resolution is presented. Using a partially collinear pump-probe geometry and two-frame phase-cycling, ultrafast two-dimensional electronic spectroscopy (2DES) was performed with transverse-spatial and temporal resolutions of 17μm and 80fs, respectively. Time-resolved 2DES maps were spatially correlated with linear extinction spectra obtained in the same imaging platform, enabling the examination of state-resolved dynamics of spatially heterogeneous materials. Thin films of aggregated CdSe nanocrystals were studied to demonstrate the combined spectral, temporal, and imaging capabilities of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.