Abstract

Domain-wall dynamics in ferroic materials underpins functionality of data storage and information technology devices. Using localized electric field of a scanning probe microscopy tip, we experimentally demonstrate a surprisingly rich range of polarization reversal behaviors in the vicinity of the initially flat $180\ifmmode^\circ\else\textdegree\fi{}$ ferroelectric domain wall. The nucleation bias is found to increase by an order of magnitude from a two-dimensional (2D) nucleus at the wall to three-dimensional nucleus in the bulk. The wall is thus significantly ferroelectrically softer than the bulk. The wall profoundly affects switching on length scales on the order of micrometers. The mechanism of correlated switching is analyzed using analytical theory and phase-field modeling. The long-range effect is ascribed to wall bending under the influence of a tip with bias that is well below the bulk nucleation level at large distances from the wall. These studies provide an experimental link between the macroscopic and mesoscopic physics of domain walls in ferroelectrics and atomistic models of 2D nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.