Abstract

We formulate a bosonic dynamical mean-field theory (B-DMFT) which provides a comprehensive, thermodynamically consistent framework for the theoretical investigation of correlated lattice bosons. The B-DMFT is applicable for arbitrary values of the coupling parameters and temperature and becomes exact in the limit of high spatial dimensions $d$ or coordination number $Z$ of the lattice. In contrast to its fermionic counterpart, the construction of the B-DMFT requires different scalings of the hopping amplitudes with $Z$ depending on whether the bosons are in their normal state or in the Bose-Einstein condensate (BEC). A detailed discussion of how this conceptual problem can be overcome by performing the scaling in the action rather than in the Hamiltonian itself is presented. The B-DMFT treats normal and condensed bosons on equal footing and thus includes the effects caused by their dynamic coupling. It reproduces all previously investigated limits in parameter space, such as the Beliaev-Popov and Hartree-Fock-Bogoliubov approximations, and generalizes the existing mean-field theories of interacting bosons. The self-consistency equations of the B-DMFT are those of a bosonic single-impurity coupled to two reservoirs corresponding to bosons in the condensate and in the normal state, respectively. We employ the B-DMFT to solve a model of itinerant and localized, interacting bosons analytically. The local correlations are found to enhance the condensate density and the BEC transition temperature ${T}_{\text{BEC}}$. This effect may be used experimentally to increase ${T}_{\text{BEC}}$ of bosonic atoms in optical lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.