Abstract

We report the LDA + DMFT (method combining local density approximation with dynamical mean-field theory) results for spectral properties of the superconductor NdFeAsO0.9F0.1 in the paramagnetic phase. The calculated momentum-resolved spectral functions are in good agreement with angle-resolved photoemission spectra (ARPES). The obtained effective quasiparticle mass enhancement (m*/m = 1.4) is smaller than the one in isostructural parent compound LaFeAsO which critical temperature under the same fluorine doping (LaFeAsO0.9F0.1) is two times lower. Our results demonstrate that in quaternary FeAs-based superconductors of the same class, changes of the crystal structure caused by substitution of one rare-earth atom, implicitly result in reduction of the electronic correlation strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.