Abstract

We discuss recent work in the study of a simple model for the collective behaviour of diverse speculative agents in an idealized stockmarket, considered from the perspective of the statistical physics of many-body systems. The only information about other agents available to any one is the total trade at time steps. Evidence is presented for correlated adaptation and phase transitions/crossovers in the global volatility of the system as a function of appropriate information scaling dimension. Stochastically controlled irrationality of individual agents is shown to be globally advantageous. We describe the derivation of the underlying effective stochastic differential equations which govern the dynamics, and make an interpretation of the results from the point of view of the statistical physics of disordered systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.