Abstract

The present work deals with the derivation of corrector estimates for the two-scale homogenization of a thermodiffusion model with weak thermal coupling posed in a heterogeneous medium endowed with periodically arranged high-contrast microstructures. The term “weak thermal coupling” refers here to the variable scaling in terms of the small homogenization parameter $\varepsilon$ of the heat conduction-diffusion interaction terms, while the “high-contrast” is considered particularly in terms of the heat conduction properties of the composite material. As a main target, we justify the first-order terms of the multiscale asymptotic expansions in the presence of coupled fluxes, induced by the joint contribution of Sorret and Dufour-like effects. The contrasting heat conduction combined with cross coupling leads to the main mathematical difficulty in the system. Our approach relies on the method of periodic unfolding combined with $\varepsilon$-independent estimates for the thermal and concentration fields and for their coupled fluxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.