Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. The cause of PD is not fully understood, and effective treatments still do not exist. It is believed that oxidative stress, mitochondrial dysfunction, and impaired lipid metabolism may underlie the pathogenesis of PD. Bile contains the breakdown products of various compounds that form in hepatocytes. This study aimed to evaluate the effect of a new benzodiazepine derivative - diazepinone (DP) on purine and lipid metabolism in the liver of rats with PD caused by rotenone (ROT) by studying the composition of bile. The concentration of ATP, ADP, AMP, xanthine, hypoxanthine, phospholipids (PL), cholesterol (CHOL), cholesterol esters (ECHOL), free fatty acids (FFA), and triglycerides (TG) was quantified in bile samples by thin-layer chromatography. Our findings suggested that the ratio of AMP/ ATP in bile increased almost threefold under the influence of ROT, and with DP, it exceeded the norm by only 1.6 times. ROT also increased the content of xanthine and hypoxanthine by 28.6% and 66.7%, respectively. DP did not affect the increased xanthine content relative to control but significantly reduced the level of hypoxanthine (up to 22.2%, above normal). In addition, ROT reduced the content of bile PL, CHOL, ECHOL, TG by 23.9%, 38.6%, 47.5%, 39.2 %, respectively. Under the influence of the DP, all the above indicators returned to the level of control. Thus, diazepinone improves both the metabolism of purines and lipids in the liver of rats with ROT-simulated PD. This drug may become a therapeutic agent for treating PD and possibly other neurodegenerative diseases in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.