Abstract

Conventional systemic chemotherapy leads to poor therapeutic outcomes at moments in cancer therapy because the nontargeting anticancer drug release results in adverse effects and consequently drug resistance. The combination therapeutic strategy provides an alternative way to solve the conundrums. Herein, drug delivery systems with a rational design and tumor-targeting abilities become the ideal carriers for combinatorial therapy. IR780 iodide possesses near-infrared fluorescence intensity for fluorescence imaging (FI) and photothermal conversion for photoacoustic imaging (PAI), which also can be employed for tumor phototherapy (including photothermal therapy and photodynamic therapy). However, hydrophobicity and rapid elimination in vivo limit its biomedical applications. Furthermore, the hydrophobicity and high crystallization of IR780 result in poor drug-loading capacity and low stability. In this study, the high-pressure homogenization method was utilized for hydrophobic molecular IR780 and DTX coloading to construct IR780/DTX-PCEC nanoparticles which exhibit narrow size distribution and satisfactory drug-loading capacity. With further erythrocyte membrane [red blood cell (RBC)] camouflaging, the obtained IR780/DTX-PCEC@RBC nanoparticles present desired stability and prolonged circulation time in vivo. Additionally, the IR780/DTX-PCEC@RBC nanoparticles not only can be employed as a FI/PAI dual model imaging probe but also exhibit the property for phototherapy and chemotherapy of tumors. Based on the therapeutic outcome of combination therapy, the IR780/DTX-PCEC@RBC nanoparticles can serve as promising FI- and PAI-guided photo-chemo combination therapy agents for the future treatment of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.