Abstract

Series structure-based resistance thermometry readouts offer several advantages for multi-point temperature measurements. However, because of the diversity of nonlinear error sources and differences among channels in such readouts, existing nonlinear error correction methods are ineffective. In view of this situation, a nonlinear error correction method based on error source analysis is proposed. The proposed method first determines the impacts of error sources by analyzing the circuit architecture. The contributions of the common-mode rejection ratio and the mismatch between positive and opposite exciting currents are then eliminated using resistance bridge calibrators. Finally, the residuals are fitted to various polynomial functions. The results of experiments show that correction based on the proposed method results in a maximum nonlinear readout error of 1.87 × 10-5, compared with 4.01 × 10-5 using the classical method. Thus, the proposed method of nonlinear error correction is effective for series structure-based resistance thermometry readout.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.