Abstract

High-spatial-resolution acquisition (HR) was previously proposed for 3D echo-planar spectroscopic imaging (EPSI) in combination with a high-spatial-resolution water reference EPSI data set to minimize inhomogeneous spectral line broadening, allowing for local frequency shift (B(0) shift) correction in human brain metabolite maps at 1.5 T (Ebel A et al., Magn. Reson. Imaging 21:113-120, 2003). At a higher magnetic field strength, B(0), increased field inhomogeneities typically lead to increased line broadening. Additionally, increased susceptibility variations render shimming of the main magnetic field over the whole head more difficult. This study addressed the question whether local B(0)-shift correction still helps limit line broadening in whole-brain 3D EPSI at higher magnetic fields. The combination of HR and local B(0)-shift correction to limit line broadening was evaluated at 4 T. Similar to the results at 1.5 T, the approach provided a high yield of voxels with good spectral quality for 3D EPSI, resulting in improved brain coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.