Abstract

A frequent practice in feature selection is to maximize the Kullback–Leibler (K–L) distance between target classes. In this note we show that this common custom is frequently suboptimal, since it fails to take into account the fact that classification occurs using a finite number of samples. In classification, the variance and higher order moments of the likelihood function should be taken into account to select feature subsets, and the Kullback–Leibler distance only relates to the mean separation. We derive appropriate expressions and show that these can lead to major increases in performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.