Abstract

Abstract When hydrological models are used for probabilistic streamflow forecasting in the Ensemble Streamflow Prediction (ESP) framework, the deterministic components of the approach can lead to errors in the estimation of forecast uncertainty, as represented by the spread of the forecast ensemble. One avenue for correcting the resulting forecast reliability errors is to calibrate the streamflow forecast ensemble to match observed error characteristics. This paper outlines and evaluates a method for forecast calibration as applied to seasonal streamflow prediction. The approach uses the correlation of forecast ensemble means with observations to generate a conditional forecast mean and spread that lie between the climatological mean and spread (when the forecast has no skill) and the raw forecast mean with zero spread (when the forecast is perfect). Retrospective forecasts of summer period runoff in the Feather River basin, California, are used to demonstrate that the approach improves upon the performance of traditional ESP forecasts by reducing errors in forecast mean and improving spread estimates, thereby increasing forecast reliability and skill.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.