Abstract
Study of vehicle dynamics aggregates possibilities to enhance performance, safety and reliability, such as the integration of control systems, usually requiring knowledge on vehicle's states and parameters. However, some critical values are difficult to measure or are not disclosed. For this reason, dynamics and stability analysis of six-wheeled vehicles are compromised, and available information on this matter is limited. In this context, this paper proposes the estimation of the cornering stiffness of a 6x6 vehicle by an inverse problem approach applying the Levenberg–Marquardt (LM) method. The algorithm required data from field experiments and from simulations of a vehicle model during a double-lane change manoeuvre developed using . Experimental and theoretical values for the vehicle yaw rate were combined through LM method for cornering stiffness estimation. The excellent agreement between measured and simulated yaw rate indicates that the proposed model and the estimated parameters properly represent the vehicle dynamics response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.