Abstract

BackgroundTo investigate corneal densitometry values obtained using Scheimpflug tomography in normal and highly myopic (HM) eyes and to assess the differences in densitometry values between them.MethodsHighly myopic and normal corneas were examined using the Pentacam Scheimpflug imaging system. Corneal densitometry was automatically performed over a 12-mm diameter area, which was divided on the basis of annular concentric zones (0–2 mm, 2–6 mm, 6–10 mm, 10–12 mm, total diameter) and depth (anterior layer: inner 120 μm; center layer: from 120 μm to the last 60 μm; posterior layer: last 60 μm; total corneal thickness).ResultsA total of 100 normal and 100 HM eyes were enrolled in this study. Upon total corneal thickness densitometry, the HM group was found to have significantly lower values compared with the normal group in 4 annuli, including the 2 mm central zone, 2-6 mm zone, 6–10 mm zone, and 0–12 mm total diameter. Upon anterior layer densitometry, the HM group demonstrated statistically lower values in the 2-6 mm and 6–10 mm zones. Upon densitometry of the central and posterior layers, the HM group was found to have lower values in all annuli.ConclusionsThe densitometry map reveals that light backscatter was lower in most portions of the HM cornea than in the normal cornea.

Highlights

  • To investigate corneal densitometry values obtained using Scheimpflug tomography in normal and highly myopic (HM) eyes and to assess the differences in densitometry values between them

  • Changes in corneal-related parameters in HM eyes, such as corneal curvature, corneal thickness, and endothelial density, are still under debate [4–7].Previous study of biomechanical properties of cornea demonstrated that corneal hysteresis was significantly lower in HM, which may indicate that some aspects of corneal biomechanical properties such as elasticity, viscosity, hydration, stiffness may be compromised in HM eyes [8]

  • Considering the densitometry values for the total corneal thickness, which was separated by concentric annular zones around the apex, the corneal light backscatter in the first 3 annuli was statistically lower in the HM group than in the normal group (HM = 14.7 ± 1.5, normal = 15.2 ± 1.6, P = 0.028; HM = 14.1 ± 2.1, normal = 15.4 ± 3.9, P = 0.001; HM = 22.1 ± 8.8, normal = 25.2 ± 8.0, P = 0.002, respectively)

Read more

Summary

Introduction

To investigate corneal densitometry values obtained using Scheimpflug tomography in normal and highly myopic (HM) eyes and to assess the differences in densitometry values between them. With HM being the fourth leading cause of blindness, 70% of HM eyes have the chance to progress to sight-threatening pathologic retinal impairments, including retinal detachment, retinal degeneration, choroidal neovascularization, and choroidal degeneration [3]. As a relatively new imaging method, Scheimpflug photography can provide a quantification assessment of light scattering and help assess corneal infiltrates [9]. PentacamHR, a noninvasive, rapid, and reproducible optical system (Oculus GMbH, Wetzlar, Germany), can be used to assess the ocular anterior segment from the anterior corneal surface to the posterior lens surface for corneal topography, corneal pachymetry, anterior chamber depth analysis, and lens clarity analysis [10]. The ability of Pentacam to measure corneal transparency changes objectively and noninvasively may help monitor corneal disease progression and even improve corresponding management

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.