Abstract

5 nm Co–Rh bimetallic nanoparticles with narrow size distributions and three different atomic compositions (2, 10, and 16 % Rh) were synthesized using a colloidal method. The bimetallic nanoparticles were loaded into mesoporous silica support MCF-17 and utilized in the catalytic hydrogenation of CO (Fischer–Tropsch synthesis). As compared to the pure 5 nm Co/MCF-17 catalyst, the bimetallic Co–Rh catalysts showed a similar activity while enhancing the selectivity towards alcohols, as evidenced by an increased ratio of alcohol to hydrocarbon products. Furthermore, larger alcohols such as propanol were formed with the addition of Rh, which is not observed with the pure Co/MCF-17 catalyst. In situ synchrotron based Ambient Pressure X-ray Photoelectron Spectroscopy studies on the Co–Rh samples revealed that Rh is segregated to the surface of the nanoparticles under reaction conditions, which plays an important role in altering the selectivity towards alcohol production. An optimum surface Rh concentration exists at ~9 at.%, where a fivefold enhancement in the alcohol-to-hydrocarbon ratio was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.