Abstract

To deal with energy and environmental issues, it is necessary to exploit efficient and stable electrocatalysts for the generation of clean hydrogen. Herein, we describe the synthesis of bimetallic Fe/Ni alloy encapsulated by amorphous carbon shells via a facile annealing strategy for electrocatalytic oxygen evolution reaction (OER). The ferric nickel tartrate annealed at 800 °C (Ni3Fe1Ox@C-800) exhibits a low OER overpotential of 264 mV at 10 mA cm−2 and good stability in alkaline media. Compared with monometallic counterpart, bimetallic Ni3Fe-based nanocomposites show lower OER barrier (ca. 324 kJ mol−1) due to a cooperation mechanism between Ni and Fe sites in promoting electrocatalytic water oxidation. Compared with those annealed at other temperatures, the enhanced OER performance of Ni3Fe1Ox@C-800 can be ascribed to the large electrochemical surface area for exposing more active sites, smaller charge transfer, and better intrinsic activity of Ni3Fe-based sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.