Abstract
Whereas high electrical conductivity and mechanical stretchability are both essentially required for flexible electronics, simultaneously achieving them remains a great challenge due to the "trade-off" effect. Herein, an ultrastretchable conductor with core-sheath heterogeneous interlocked structure was developed, induced by interfacial soldering silver nanowires (AgNWs) which gradually evolved into elastic conductive fiber. Adhesive polydopamine-functionalized MXene (PDM) was proposed as an interfacial solder to assemble AgNWs along fibers while induced strong cold-welding effect soldered them into superelastic interconnected network. In situ coaxial heterogeneous interlocking between core AgNWs and sheath PDM network gradually formed during the interfacial soldering process, which enables elastic conductor simultaneously owning large mechanical stretchability and high electrical conductivity. Stretchable conductive fiber with core-sheath heterogeneous interlocking structure not only exhibits excellent electrical conductivity (1.13 × 105 S/m) but also could maintain stability (ΔR/R0 < 0.19) even under large mechanical deformations (300%). Ultrastretchable fibrous conductor with core-sheath heterogeneous interlocked microstructure induced by adhesive PDM interfacial soldering holds great promise in soft electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.