Abstract
For the efficient reduction of excess plutonium amount, Japan Atomic Energy Research Institute (JAERI, now Japan Atomic Energy Agency) has studied a concept of rock-like oxide (ROX) fuel as a kind of inert matrix fuel (IMF). In the JAERI study, ROX fuel is burnt in existing light water reactors (LWRs), while in this study, pebble bed type high temperature gas cooled reactor (HTGR) is studied, mainly because of its high neutron economy and softer neutron spectrum than LWRs. Here, PuO2-yttria stabilized zirconia (YSZ: (Zr,Y)O2-x) particles are dispersed in graphite matrix. In the ROX fueled LWR study, it was necessary to improve fuel temperature reactivity coefficients by adding such additives as 238U and Er. Here in HTGR, although the negative temperature coefficient is much larger than that in LWR without any improvements, temperature coefficient was improved as large as possible to the level of UO2 HTGR case by adding Er in the fuel. Burnup calculations on PuO2-YSZ fueled HTGR, by simulating the continuous refueling of fuel pebbles with the batch fuel loading, showed almost complete transmutation for 239Pu and more than 80% for the total plutonium. As the maximum power density of the fuel pebble obtained by the core burnup calculation was very large in comparison with the UO2 HTGR, the maximum temperature in YSZ fuel particle was also evaluated. Despite the low thermal conductivity of YSZ, the evaluated YSZ temperature was well below the melting point, thanks to the high thermal conductivity of graphite and small YSZ particle size. Here, the high power density in the Pu-YSZ fueled core might become a problem, but is possible to be reduced by adjusting the initial plutonium enrichment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.