Abstract
Adaptation is a critical determinant of the diversification, persistence, and geographic range limits of species. Yet the genetic basis of adaptation is often unknown and potentially underpinned by a wide range of mutational types-from single nucleotide changes to large-scale alterations of chromosome structure. Copy number variation (CNV) is thought to be an important source of adaptive genetic variation, as indicated by decades of candidate gene studies that point to CNVs underlying rapid adaptation to strong selective pressures. Nevertheless, population-genomic studies of CNVs face unique logistical challenges not encountered by other forms of genetic variation. Consequently, few studies have systematically investigated the contributions of CNVs to adaptation at a genome-wide scale. We present a genome-wide analysis of CNV contributing to the adaptation of an invasive weed, Ambrosia artemisiifolia. CNVs show clear signatures of parallel local adaptation between North American (native) and European (invaded) ranges, implying widespread reuse of CNVs during adaptation to shared heterogeneous patterns of selection. We used a local principal component analysis (PCA) to genotype CNV regions in whole-genome sequences of samples collected over the last two centuries. We identified 16 large CNV regions of up to 11.85 megabases in length, eight of which show signals of rapid evolutionary change, with pronounced frequency shifts between historic and modern populations. Our results provide compelling genome-wide evidence that CNV underlies rapid adaptation over contemporary timescales of natural populations.
Submitted Version
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have