Abstract

Recently discovered genome-wide rare copy number variants (CNVs) have unprecedented levels of statistical association with many developmental neuropsychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability and attention deficit hyperactivity disorder. However, as CNVs often include multiple genes, causal genes responsible for CNV-associated diagnoses and traits are still poorly understood. Mouse models of CNVs are in use to delve into the precise mechanisms through which CNVs contribute to disorders and associated traits. Based on human and mouse model studies on rare CNVs within human chromosome 22q11.2, we propose that alterations of a distinct set of multiple, noncontiguous genes encoded in this chromosomal region, in concert with modulatory impacts of genetic background and environmental factors, variably shift the probabilities of phenotypes along a predetermined developmental trajectory. This model can be further extended to the study of other CNVs and may serve as a guide to help characterize the impact of genes in developmental neuropsychiatric disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.