Abstract

ABSTRACTThe traditional reliability models cannot well reflect the effect of performance dependence of subsystems on the reliability of system, and neglect the problems of initial reliability and standby redundancy. In this paper, the reliability of a parallel system with active multicomponents and a single cold-standby unit has been investigated. The simultaneously working components are dependent and the dependence is expressed by a copula function. Based on the theories of conditional probability, the explicit expressions for the reliability and the MTTF of the system, in terms of the copula function and marginal lifetime distributions, are obtained. Let the copula function be the FGM copula and the marginal lifetime distribution be exponential distribution, a system with two parallel dependent units and a single cold-standby unit is taken as an example. The effect of different degrees of dependence among components on system reliability is analyzed, and the system reliability can be expressed as the linear combination of exponential reliability functions with different failure rates. For investigating how the degree of dependence affects the mean lifetime, furthermore, the parallel system with a single cold standby, comprising different number of active components, is also presented. The effectiveness of the modeling method is verified, and the method presented provides a theoretical basis for reliability design of engineering systems and physics of failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.