Abstract

We describe a novel manifestation of rigidochromic behavior in a series of tetranuclear Cu(I)-pyrazolate (Cu4pz4) macrocycles, with implications for solid-state luminescence at deep-blue wavelengths (<460 nm). The Cu4pz4 emissions are remarkably sensitive to structural effects far from the luminescent core: when 3,5-di-tert-butylpyrazoles are used as bridging ligands, adding a C4 substituent can induce a blue shift of more than 100 nm. X-ray crystal and computational analyses reveal that C4 units influence the conformational behavior of adjacent tert-butyl groups, with a subsequent impact on the global conformation of the Cu4pz4 complex. Emissions are mediated primarily through a cluster-centered triplet (3CC) state; compression of the Cu4 cluster into a nearly close-packed geometry prevents the reorganization of its excited-state structure and preserves the 3CC energy at a high level. The remote steric effect may thus offer alternative strategies toward the design of phosphors with rigid excited-state geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.