Abstract
Organic compounds bearing both silyl and boryl groups are important building blocks in organic synthesis because of the adequate reactivity of the silyl and boryl groups and high stereospecificity in their derivatization reactions. The difference in reactivity between the silyl and boryl groups enables stepwise derivatization of these groups to afford complex molecules. Here, we report the copper(I)-catalyzed silaboration of terminal allenes to produce multisubstituted allylic boronates embedded with an alkenyl silane structure. The reaction can proceed with a variety of allenes and silylboranes. Furthermore, the silyl and boryl groups were successfully converted into other functional groups, while retaining the stereochemistry of the alkene moiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.