Abstract

Abstract The nanostructured catalysts of copper hydrogen phosphate monohydrate and copper pyrophosphate were developed for catalyzing dehydration of fructose to 5-hydroxymethylfurfural under hot compressed water at 200 °C. As evidenced by X-ray absorption fine structure, X-ray diffraction, SEM, and TEM analyses, the CuHPO4·H2O (as-synthesized) exhibits needle-like nanocrystals, while the samples calcined at 600 °C and 900 °C display α-Cu2P2O7 phases in rod-like nanostructure and irregularly shaped microcrystal, respectively. Each copper is distributed throughout the phosphate network. Among all samples, the Cu2P2O7 catalysts with weak acid strength (+3.3 ≤ H0 ≤ +4.8) was highly active and selective for 5-hydroxymethylfurfural production with a yield of 36% and maximum turnover number, while no metal leaching was observed after the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.