Abstract
Nickel and cobalt are potentially critical metals in many countries because of their great significance for national security and economic development, and they are mainly derived from magmatic Ni-Cu‑platinum-group element (PGE) sulfide ore deposits hosted in mafic-ultramafic intrusions. Although Cu isotopes have been used to trace the metallogenic processes in Ni-Cu-(PGE) sulfide deposits, the Cu isotopic fractionation mechanism during magma generation and evolution in convergent tectonic settings is still debated. The Xiarihamu magmatic NiCu sulfide deposit, located in the East Kunlun orogenic belt, northern Tibetan Plateau, is the world's largest known magmatic NiCu sulfide deposit in an orogenic setting. Here we report the whole-rock element and sulfide CuS isotope compositions of samples from the Xiarihamu deposit. The δ65Cu and δ34S values of the sulfide grains from the massive, heavily disseminated, and disseminated sulfide ores range from 0.19 ‰ to 0.79 ‰, and from 4.2 ‰ to 9.4 ‰, respectively. Most of the samples have δ65Cu values higher than normal mantle values, except for two samples with δ65Cu values within the mantle composition range. The whole rock S/Se ratios range from 3200 to 22,500, and the Cu/Pd ratios range from 330 to 820,000, which are also mainly higher than the corresponding mantle values. Modeling calculations of the δ65Cu, S/Se, and Cu/Pd values reveal that the sulfide liquid to silicate melt mass ratio (R factor) is not the main reason for the observed δ65Cu variations in the Xiarihamu deposit. The variations in the Cu/Pd ratios of the whole-rock samples, and the sulfide δ65Cu and δ34S values with depth indicate that sulfide segregation and crustal contamination can reasonably jointly produce the Cu isotope variations in the Xiarihamu deposit, and the variations of samples from different parts of the deposit are caused by variations in these controlling factors. Therefore, Cu isotope fractionation in convergent tectonic settings is mainly caused by magma evolution. The complicated controlling factors of the Cu and S isotopes indicate that the correlation between δ65Cu and δ34S values may not be helpful in evaluating the metallogenic potential of Ni-Cu-(PGE) sulfide deposits. Cu isotopes can be used to ascertain the migration path of magmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.