Abstract

A copper-catalyzed regiodivergent chloropentafluorosulfanylation strategy for 1,3-enynes using SF5Cl has been developed. The regioselectivity is dictated by the structural and substitution patterns of 1,3-enynes, enabling facile access to three classes of SF5-containing products: propargylic chlorides, 1,3-dienes, and allenes. The reaction systems involve radical species, where the transfer of a chlorine atom from SF5Cl to a carbon radical is considered the predominant pathway. Diverse types of SF5- building blocks can be synthesized through simple functional group transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.