Abstract

Traditionally, organic chemical reactions require organic solvents, toxic catalysts, heat, or high pressure. However, copper-free click chemistry has been shown to have favorable reaction rates and orthogonality in water, buffer solutions, and physiological conditions without toxic catalysts. Strain-promoted azide-alkyne cycloaddition and inverse electron-demand Diels-Alder reactions are representative of copper-free click chemistry. Artificial chemical reactions via click chemistry can also be used outside of the laboratory in a controllable manner on live cell surfaces, in the cytosol, and in living bodies. Consequently, copper-free click chemistry has many features that are of interest in biomedical research, and various new materials and strategies for its use have been proposed. Herein, recent remarkable trials that have used copper-free click chemistry are described, focusing on their applications in molecular imaging and therapy. The research is categorized as nanoparticles for drug delivery, imaging agents for cell tracking, and hydrogels for tissue engineering, which are rapidly advancing fields based on click chemistry. The content is based primarily on the experience with click chemistry-based biomaterials over the last 10 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.