Abstract

Alzheimer's disease is characterized by senile plaques in which metallic ions (copper, zinc, and iron) are colocalized with amyloid-β peptides of different sequences in aggregated forms. In addition to the full-length peptides (Aβ1-40/42), N-terminally truncated Aβ3-40/42 forms and their pyroglutamate counterparts, Aβp3-40/42, have been proposed to play key features in the aggregation process, leading to the senile plaques. Furthermore, they have been shown to be more toxic than the full-length Aβ, which made them central targets for therapeutic approaches. In order to better disentangle the possible role of metallic ions in the aggregation process, copper(II) coordination to the full-length amyloid peptides has been extensively studied in the last years. However, regarding the N-terminally modified forms at position 3, very little is known. Therefore, copper(I) and copper(II) coordination to those peptides have been investigated in the present report using a variety of complementary techniques and as a function of pH. Copper(I) coordination is not affected by the N-terminal modifications. In contrast, copper(II) coordination is different from that previously reported for the full-length peptide. In the case of the pyroglutamate form, this is due to preclusion of N-terminal amine binding. In the case of the N-terminally truncated form, alteration in copper(II) coordination is caused by second-sphere effects that impact the first binding shell and the pH-dependent repartition of the various [Cu(peptide)] complexes. Such second-sphere effects are anticipated to apply to a variety of metal ions and peptides, and their importance on changing the first binding shell has not been fully recognized yet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.