Abstract

The catalytic activities of copper and cerium co-doped titanium dioxide were studied experimentally and theoretically in the synthesis of methanol by the photo reduction of carbon dioxide with water firstly. Photo catalysts copper and cerium co-doped titanium dioxide were prepared via the equivalent-volume incipient wetness impregnation method. The catalysts were characterized by XRD, Raman, BET, and electrochemistry analyses. The catalytic properties were determined in the synthesis of methanol from CO 2 in the aqueous solution. The experimental results suggested that Cu/Ce–TiO 2 catalysts obviously enhanced the efficiency of the photocatalytic reduction of CO 2. The methanol yield could reach up to 180.3 μmol/g-cat rapidly. The different effects of copper and cerium on the surface of titanium dioxide have been calculated at the Becke’s three-parameter hybrid exchange functional together with the Lee–Yang–Parr correlation functional (B3LYP) level. Our results revealed that Ce atoms affect the reaction more profoundly than Cu atoms do. Ce atoms activated H 2O and CO 2 molecules, while Cu atoms act as the channel of photoelectrons in real time and prevent the recombination of electrons and holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.