Abstract

With calcination, sulfur vacancies rich CdS based composite photocatalyst has been synthesized successfully with coordination polymer as the precursor, which is constructed by Cd(II) metal ion and 2-mercaptobenzimidazole ligand. After calcination, Cd(II) ion and thiol group convert to CdS nanoparticle with the size about 5 to 8 nm, which disperses evenly in nitrogen doped carbon matrix (NC) formed by benzimidazole. During this process, some coordinated nitrogen atoms dope in the lattice of CdS and replace sulfur atoms, which leads to the generation of sulfur vacancies. In NC, the major component is graphitic carbon with a sp2 hybridized pattern. Besides carbon, a small fraction of nitrogen element also exists, including pyridinic-N, pyrolic-N, and quaternary-N. Under visible light irradiation, the composite photocatalyst exhibits very excellent H2 production ability as well as perfect stability during H2 production, which does not decay after 30 h. For CdS based composite photocatalysts, temperature exhib...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.