Chemical Reviews | VOL. 122
Read

Coordination-Induced Bond Weakening

Publication Date Jul 28, 2022

Abstract

Coordination-induced bond weakening is a phenomenon wherein ligand X-H bond homolysis occurs in concert with the energetically favorable oxidation of a coordinating metal complex. The coupling of these two processes enables thermodynamically favorable proton-coupled electron transfer reductions to form weak bonds upon formal hydrogen atom transfer to substrates. Moreover, systems utilizing coordination-induced bond weakening have been shown to facilitate the dehydrogenation of feedstock molecules including water, ammonia, and primary alcohols under mild conditions. The formation of exceptionally weak substrate X-H bonds via small molecule homolysis is a powerful strategy in synthesis and has been shown to enable nitrogen fixation under mild conditions. Coordination-induced bond weakening has also been identified as an integral process in biophotosynthesis and has promising applications in renewable chemical fuel storage systems. This review presents a discussion of the advances made in the study of coordination-induced bond weakening to date. Because of the broad range of metal and ligand species implicated in coordination-induced bond weakening, each literature report is discussed individually and ordered by the identity of the low-valent metal. We then offer mechanistic insights into the basis of coordination-induced bond weakening and conclude with a discussion of opportunities for further research into the development and applications of coordination-induced bond weakening systems.

Concepts

Weak Substrate Mild Conditions Strategy In Synthesis Integral Process Primary Alcohols Favorable Electron Transfer Promising Applications Formal Transfer Favorable Reductions Water Alcohols

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Coronavirus Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  5

Introduction: Test solutions (Biotrue, renu Advanced [Bausch and Lomb], ACUVUE RevitaLens [Johnson and Johnson Vision], cleadew [Ophtecs corp.] or AOS...

Read More

Good health Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  2

Patient and public involvement in health care is considered indispensable in the way we conduct daily pediatric neurology practice, and in the develop...

Read More

Quality Of Education Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  5

Ingenta is not the publisher of the publication content on this website. The responsibility for the publication content rests with the publishers prov...

Read More

Gender Equality Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  3

Introduction: As of early March 2022, the COVID-19 pandemic has killed more 5.9 million people worldwide, and infected more than 437 million.

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.