Abstract

Novel coincident 3-D radar, lidar and optical image measurements of dynamical structures in polar mesosphere summer echoes (PMSE) and noctilucent clouds (NLC) are presented. Common volume mesospheric measurements were made over central Alaska using the new Poker Flat Incoherent Scatter Radar (PFISR), a co-located Rayleigh lidar and remote, two-station digital image observations, enabling the first detailed investigation of the horizontal and vertical structures of NLC and PMSE. Coincident measurements were made of an unusual NLC display recorded on 10–11 August 2007, characterized by a broad luminous band that contained several prominent wave forms. Concurrent lidar and image measurements established the presence of NLC within the radar volume from ∼09:00 UT (01:00 LT), when the solar depression angle was 10.4°, until dawn. Strong but intermittent PMSE were detected by PFISR, with distinct patchy structures that exhibited a similar southward motion as the NLC. Detailed comparison of the 3-D PMSE structures and the NLC lidar and image data have revealed striking similarities when account was taken of the NLC layer altitude, suggesting a direct link between their small-scale spatial signatures (within the current resolution of the radar measurements). At the same time, the lidar detected a sustained increase in the backscatter signal, while the imagers revealed the development of copious short horizontal wavelength (4.9 km) billow waves. We conclude that strong wind shears associated with the Kelvin–Helmholtz billow instabilities played a key role in the development of a neutral turbulence layer in close proximity to the NLC layer resulting in the strong but intermittent PMSE detected at 450 MHz on this occasion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.