Abstract

Nonalcoholic fatty liver disease encompasses isolated steatosis or nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH). NASH develops from isolated steatosis with obscure driving forces. We aim to identify key factors promoting this transition. Following 21-week of high-fat diet feeding, obese mice were classified into two groups termed as isolated steatosis and NASH based on hematoxylin-eosin staining of liver histology. The integrated multi-omics analysis of lipidome, transcriptome and gut microbiome were performed in mice with isolated steatosis and NASH, and confirmed in human samples. Livers in mice with NASH lost most lipids, and the transcriptional landscape was also changed dramatically in mice with NASH in relative to mice with isolated steatosis. Plasma lipidome analysis demonstrated a very clear difference between these two groups of mice, which was partially recapitulated in serum of patients with isolated steatosis and NASH. The microbiota composition revealed that Bacteroides genus and Bacteroides uniformis species decreased while Mucispirillum genus and Mucispirillum schaedleri species increased largely in mice with NASH. More importantly, we found that Bacteroides uniformis correlated positively with triglycerides (TGs) and negatively with free fatty acids (FFAs) and PE(18:1/20:4), while Mucispirillum schaedleri correlated positively with FFAs, LysoPC(20:3), LysoPC(20:4) and DG(16:1/18:2). Mechanically, administration of Bacteroides uniformis increased specific TGs, and decreased hepatic injury and inflammation in diet-induced mice. Overall, through multi-omics integration, we identified a microbiota-lipid axis promoting the initiation of NASH from isolated steatosis, which might provide a novel perspective on NASH pathogenesis and treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.