Abstract

The emergence of large-scale time-series data and advancements in computational power have opened new avenues for analyzing the spatiotemporal evolution of groundwater chemistry, water quality, and human health risks. This paper utilizes hydrogeochemical methods to elucidate the controlling factors of water chemical components based on the test results of 124 groundwater samples collected from 31 monitoring wells in Fuxin City, Liaoning Province, China, from 2018 to 2021. By integrating the Random Forest and Enhanced Water Quality Index methods for water quality assessment and employing the Human Health Risk Assessment (HHRA) model to analyze human health risks, our findings indicate that the groundwater is mildly alkaline, with SO4·Cl-Ca·Mg and HCO3-Ca·Mg as the dominant hydrochemical types, primarily derived from the dissolution of carbonate and silicate minerals such as dolomite, limestone, and andesite, and cation exchange reactions. The EI_RF water quality evaluation model reveals that the overall water quality in the study area is poor, with Class I and II water quality zones mainly located in the northeastern and central parts of the study area, showing a gradual transition from Class I and II in the northeast to Classes IV and V in the southwest, significantly influenced by NO3-, TH, TDS, and SO42-. The HHRA model results indicate that the potential non-carcinogenic risk of groundwater nitrates has a severe impact on infants, with the spatial distribution being low in the northeast and high in the southwest. Due to industrial activities, agricultural practices, and population growth, certain areas in developing countries such as China and India exhibit nitrate concentrations significantly higher than those in most international regions, highlighting global environmental and public health challenges. This underscores the importance of enhancing groundwater monitoring and implementing measures to mitigate pollution. These research outcomes hold significant implications for the government in formulating rational protection and management measures to ensure the sustainable utilization of groundwater resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.