Abstract
Estrogen causes the cytoplasmic destabilization of albumin and gamma-fibrinogen mRNA in Xenopus laevis liver. The purpose of the present study was to determine whether mRNA destabilization is a generalized phenomenon in response to estrogen, or whether this process is restricted to a particular class of mRNAs. To address this, we have expanded our bank of serum protein-coding cDNA clones to include transferrin, the second protein of inter-alpha-trypsin inhibitor and clone 12B, for which there is no mammalian homolog. Together with albumin and gamma-fibrinogen, these represent more than 85% of the mRNAs encoding liver secreted proteins. Estrogen administration to male Xenopus or to liver explant cultures causes the generalized disappearance of all of these mRNAs. In contrast, estrogen has no effect on actin, ferritin, or poly(A)-binding protein mRNA, all of which encode intracellular proteins. We have previously demonstrated that albumin mRNA is degraded in both messenger ribonucleoprotein and polysome fractions. Sucrose gradient analysis demonstrates the same pattern for degradation of all other serum protein-coding mRNAs. Estrogen has no effect on the amounts or gradient distribution of actin, ferritin, or poly(A)-binding protein mRNA. We conclude that regulated destabilization of mRNAs encoding secreted proteins is a generalized phenomenon in response to estrogen stimulation of Xenopus liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.