Abstract

Calcium and calmodulin have been widely implicated in the control of cell proliferation. We have created a strain of the genetically tractable filamentous fungus, Aspergillus nidulans, that is conditional for calmodulin expression. This was accomplished by replacing the unique endogenous calmodulin gene with one regulated by the inducible alcohol dehydrogenase (alcA) gene promoter by homologous recombination. This strain cannot grow when the cells are incubated in medium containing a carbon source that represses the alcA promoter. Characterization of the arrested cells shows that 83% are blocked in the G2 phase of the cell cycle. The block is due to very low levels of calmodulin and is fully reversible upon changing to medium that contains an inducer of the alcA promoter. The rate of cell proliferation in this strain is dependent upon both the intracellular calmodulin and extracellular Ca2+ concentrations. Raising the calmodulin concentration by inducing the alcA promoter not only causes the cells to enter the proliferative cycle more quickly and to grow faster, but also decreases the concentration of extracellular Ca2+ required to support growth by 10-fold, as compared with cells grown in noninducing medium. Thus both the intracellular calmodulin and extracellular Ca2+ concentrations are important and interactive factors in regulating the nuclear division cycle of Aspergillus nidulans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.