Abstract

The cooperative transportation of a cable-suspended load by two unmanned rotorcraft is analyzed. Initially, the equations describing a system composed of three point masses and two rigid cables are derived. The model is then linearized about the hovering condition, and analytical expressions are derived to describe the eigenstructure of the open-loop system. Thanks to the specific parameterization of the problem, the different dynamic modes are outlined and discussed within an analytical framework. A novel controller is designed to enable the UAVs in the formation to perform trajectory tracking, maintain formation geometry, and stabilize payload swing simultaneously. A preliminary investigation of closed-loop stability is conducted using a linear approach. Validation is performed in a realistic simulation scenario where two drones are modeled as rigid bodies under the effect of external disturbances and rotor-generated forces and moments, as obtained by Blade Element Theory. The proposed method demonstrates relative simplicity and significantly improves the flying qualities of delivery operations while minimizing hazardous payload oscillations and reducing energy demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.