Abstract

Progesterone receptors (PR) play critical roles in eukaryotic gene regulation, yet the mechanisms by which they assemble at multisite promoters are poorly understood. Here we present a thermodynamic analysis of the interactions of the PR B-isoform (PR-B) with promoters containing either one or two progesterone response elements (PREs). Utilizing quantitative footprinting, we have resolved the microscopic energetics of PR-B binding, including cooperativity terms. The results of this analysis challenge a number of assumptions found in traditional models of receptor function. First, PR-B interactions at a single PRE can be equally well described by mechanisms invoking either the receptor monomer or the dimer as the active DNA binding species. If, as is commonly accepted, PR-B interacts with response elements only as a preformed dimer, then its intrinsic binding affinity is not the typically observed nanomolar but is rather picomolar. This high affinity binding is opposed, however, by a large energetic penalty. The penalty presumably pays for costly structural rearrangements of the receptor dimer and/or response element that are needed to form the protein-DNA complex. If PR-B assembles at a single response element via successive monomer binding reactions, then this penalty minimizes cooperative interactions between adjacent monomers. When binding to two response elements, the receptor exhibits strong intersite cooperativity. Although this phenomenon has been observed before, the present work demonstrates that the energetics reach levels seen in highly cooperative systems such as lambda cI repressor. This first quantitative dissection of cooperative receptor-promoter interactions suggests that PR-B function is more complex than traditionally envisioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.