Abstract

In this paper we propose a cooperative distributed linear model predictive control strategy applicable to any finite number of subsystems satisfying a stabilizability condition. The control strategy has the following features: hard input constraints are satisfied; terminating the iteration of the distributed controllers prior to convergence retains closed-loop stability; in the limit of iterating to convergence, the control feedback is plantwide Pareto optimal and equivalent to the centralized control solution; no coordination layer is employed. We provide guidance in how to partition the subsystems within the plant. We first establish exponential stability of suboptimal model predictive control and show that the proposed cooperative control strategy is in this class. We also establish that under perturbation from a stable state estimator, the origin remains exponentially stable. For plants with sparsely coupled input constraints, we provide an extension in which the decision variable space of each suboptimization is augmented to achieve Pareto optimality. We conclude with a simple example showing the performance advantage of cooperative control compared to noncooperative and decentralized control strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.