Abstract

This article develops a cooperative-critic learning-based secure tracking control (CLSTC) method for unknown nonlinear systems in the presence of multisensor faults. By introducing a low-pass filter, the sensor faults are transformed into "pseudo" actuator faults, and an augmented system that integrates the system state and the filter output is constructed. To reduce design costs, a joint neural network Luenberger observer (NNLO) structure is established by using neural network and input/output data of the system to identify unknown system dynamics and sensor faults online. To achieve the optimal secure tracking control, an augmented tracking system is formed by integrating the dynamics of tracking error, reference trajectory, and filter output. Then, a novel cost function is designed for the augmented tracking system, which employs the fault estimation and the discount factor. The Hamilton-Jacobi-Bellman equation is solved to obtain the CLSTC strategy through an adaptive critic structure with cooperative tuning laws. Besides, the Lyapunov stability theorem is utilized to prove that all signals of the closed-loop system converge to a small neighborhood of the equilibrium point. Simulation results demonstrate that the proposed control method has good fault tolerance performance and is suitable for solving secure control problems of nonlinear systems with various sensor faults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.