Abstract

Calcination plays a vital role during material preparation. However, the calcination conditions have often been determined empirically or have been based on trial and error. Herein we present a cooperative characterization approach to optimize calcination conditions by gas-cell in situ TEM in collaboration with microcantilever-based thermogravimetric analysis (cantilever-TGA) techniques. The morphological evolution of precursors under atmospheric conditions is observed with in situ TEM, and the right calcination temperature is provided by cantilever-TGA. The proposed approach successfully optimizes the calcination conditions of fragile MnO2 nanowire precursors with multiple valence products. The cantilever-TGA shows that a calcination temperature above 560 °C is required to transform the MnO2 precursor to Mn3O4 under an N2 atmosphere, but the in situ TEM indicates that the nanowire structure is destroyed within only 30 min under calcination conditions. Our method further suggests that heating the precursor at 400 °C using an H2-containing atmosphere can produce Mn3O4 nanowires with good electrical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.