Abstract

The assembly of superstructures from building blocks is of fundamental importance for engineering materials with distinct morphologies and properties, and deepening our understanding of self-assembly processes in nature. Up to now, it is still a great challenge in materials science to construct multiple-component superstructure with unprecedented architectural complexity and symmetry from molecular. Here, we demonstrate an improved one-pot hydrothermal carbonization of biomass strategy that is capable of fabricating unprecedented asymmetric carbonaceous bivalve-like superstructures with in suit generated solid particles and ordered porous polymers as two kinds of building blocks. In our system, different building blocks can be controllably generated, and they will assemble into complex superstructures through a proposed “cooperative assembly of particles and ordered porous polymers” mechanism. We believe that this assembly principle will open up new potential fields for the synthesis of superstructures with diverse morphologies, compositions, and properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.