Abstract

In this study, we consider a Cooperative Adaptive Cruise Control (CACC) system which regulates inter-vehicle distances in a vehicle string. Improved performance can be achieved by utilizing information exchange between vehicles through wireless communication besides local sensor measurements. However, wireless communication introduces network-induced effects that may compromise the performance of the CACC system. Therefore, we approach the design of a CACC system from a Networked Control System (NCS) perspective. Network-induced imperfections in a NCS are mainly due to limited bandwidth of the network, multiple nodes sharing the same medium, and other limitations such as transmission delays and losses. Tradeoffs between CACC performance and network specifications need to be made for achieving desired performance under these network-induced constraints. In this paper, we present a NCS modelling framework that incorporates the effect of sample-and-hold and network delays that occur due to wireless communication. Moreover, we employ this model to study the so-called string stability performance of the string in which vehicles are interconnected by a vehicle following control law and a constant time headway spacing policy. Specifically, we study how string stability is affected by network-induced effects such as delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.