Abstract

Image processing has recently been adopted for fruit damage detection in post-harvest operations. Through the implementation of hard-coded feature extraction algorithms, high accuracy has been found. The present study tested the fast and operational convolution neural networks with “YOLO v3” architecture using the online platform Supervise.ly to detect on pear fruit `Abbé Fétel' physiological disorders such as superficial scald. Two different models were trained: I) one to detect the individual pear fruits within the batches; II) one to detect superficial scald or senescence scald on pear skin. Preliminary statistics show that the model to count the fruit inside the batches reaches an accuracy of 64.70% with a 0.5 of Intersection of Units. The second one has less accuracy (up to 20% of true positive) but maintains a good level of average precision (0.6) with different confidence thresholds (0.4 and 0.2). Further research is needed to improve the accuracy of both models and to map quality pre- and post-harvest. These results will help the packing house to manage fruit batches and to ensure good fruit quality for consumers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.